Days in the Sun

From solstice to solstice, this six month long exposure compresses time from the 21st of June till the 21st of December, 2011, into a single point of view.

Wolf Moon

A full moon looking yellowish-orange, which the ancients and old people dubbed as wolf moon, accompanied by many mythical stories.

A Star Factory

These are the places in the Milky Way galaxy where stars are formed. Awesome, isn't it?

The Ghost Nebula

The Ghost Nebula, after being captured by the Hubble space telescope

Saturn's Iapetus Moon

This is Saturn's Iapetus moon, which looks painted and colorful, setting it apart from the other moons.

Sunday, April 15, 2012

UV rays


Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, in the range 10 nm to 400 nm, and energies from 3 eV to 124 eV. It is named because the spectrum consists of electromagnetic waves with frequencies higher than those that humans identify as the colour violet. These frequencies are invisible to humans, but visible to a number of insects and birds. They are also indirectly visible, by causing fluorescent materials to glow with visible light.
UV light is found in sunlight and is emitted by electric arcs and specialized lights such as black lights. It can cause chemical reactions, and causes many substances to glow or fluoresce. Most ultraviolet is classified as non-ionizing radiation. The higher energies of the ultraviolet spectrum from wavelengths about 10 nm to 120 nm ('extreme' ultraviolet) are ionizing, but this type of ultraviolet in sunlight is blocked by normal dioxygen in air, and does not reach the ground.However, the entire spectrum of ultraviolet radiation has some of the biological features of ionizing radiation, in doing far more damage to many molecules in biological systems than is accounted for by simple heating effects (an example is sunburn). These properties derive from the ultraviolet photon's power to alter chemical bonds in molecules, even without having enough energy to ionize atoms.
Sun as seen by UV light

Although ultraviolet radiation is invisible to the human eye, most people are aware of the effects of UV through sunburn, and in tanning beds. A great deal (>97%) of mid-range ultraviolet (almost all UV above 280 nm and most above 315 nm) is blocked by the ozone layer, and would cause much damage to living organisms if it penetrated the atmosphere. What remains of ultraviolet in sunlight after atmospheric filtering is responsible for the formation of vitamin D (peak production occurring between 295 and 297 nm) in all organisms that make this vitamin (including humans). The UV spectrum thus has many effects, both beneficial and damaging, to human health.

Sun a Natural Source: The sun emits ultraviolet radiation in the UVA, UVB, and UVC bands. The Earth's ozone layer blocks 97–99% of this UV radiation from penetrating through the atmosphere. Of the ultraviolet radiation that reaches the Earth's surface, 98.7% is UVA. (UVC and more energetic radiation is responsible for the generation of the ozone layer, and formation of the ozone there). Extremely hot stars emit proportionally more UV radiation than the sun; the star R136a1 has a thermal energy of 4.57 eV, which falls in the near-UV range.
Ordinary glass is partially transparent to UVA but is opaque to shorter wavelengths, whereas silica or quartz glass, depending on quality, can be transparent even to vacuum UV wavelengths. Ordinary window glass passes about 90% of the light above 350 nm, but blocks over 90% of the light below 300 nm.
UV fluorescent lamps: Fluorescent lamps without a phosphorescent coating to convert UV to visible light, emit ultraviolet light with two peaks at 253.7 nm and 185 nm due to the peak emission of the mercury within the bulb. Eighty-five to ninety percent of the UV produced by these lamps is at 253.7 nm, while only five to ten percent is at 185 nm. Germicidal lamps use quartz (glass) doped with an additive to block the 185 nm wavelength. With the addition of a suitable phosphor (phosphorescent coating), they can be modified to produce a UVA, UVB, or visible light spectrum (all fluorescent tubes used for domestic and commercial lighting are mercury UV emission bulbs at heart).
Fluorescent Tubes
Such low-pressure mercury lamps are used extensively for disinfection, and in standard form have an optimum operating temperature of about 30 degrees Celsius. Use of a mercury amalgam allows operating temperature to rise to 100 degrees Celsius, and UVC emission to about double or triple per unit of light-arc length. These low-pressure lamps have a typical efficiency of approximately thirty to thirty-five percent, meaning that for every 100 watts of electricity consumed by the lamp, it will produce approximately 30-35 watts of total UV output. UVA/UVB emitting bulbs also sold for other special purposes, such as reptile-keeping.
UV LEDsLight-emitting diodes (LEDs) can be manufactured to emit light in the ultraviolet range, although practical LED arrays are very limited below 365 nm. LED efficiency at 365 nm is about 5-8%, whereas efficiency at 395 nm is closer to 20%, and power outputs at these longer UV wavelengths are also better. Such LED arrays are beginning to be used for UV curing applications, and are already successful in digital print applications and inert UV curing environments. Power densities approaching 3,000 mW/cm2 (30 kW/m2) are now possible, and this, coupled with recent developments by photoinitiator and resin formulators, makes the expansion of LED-cured UV materials likely.
Catastrophic Effects of exposure to UVUVA, UVB, and UVC can all damage collagen fibers and, therefore, accelerate aging of the skin. Both UVA and UVB destroy vitamin A in skin, which may cause further damage. In the past, UVA was considered not harmful or less harmful, but today it is known it can contribute to skin cancer via indirect DNA damage (free radicals and reactive oxygen species). It penetrates deeply, but it does not cause sunburn. UVA does not damage DNA directly like UVB and UVC, but it can generate highly reactive chemical intermediates, such as hydroxyl and oxygen radicals, which in turn can damage DNA. Accordingly the DNA damage caused indirectly to skin by UVA consists mostly of single-strand breaks in DNA, while the damage caused by UVB includes direct formation of thymine dimers or other pyrimidine dimers, and double-strand DNA breakage. UVA is immunosuppressive for the entire body (accounting for a large part of the immunosuppressive effects of sunlight exposure), and UVA is mutagenic for basal cell keratinocytes in skin. 
Because UVA does not cause reddening of the skin (erythema), it is not measured in the usual types of SPF testing. There is no good clinical measurement for blockage of UVA radiation, but it is important for sunscreen to block both UVA and UVB. Some scientists blame the absence of UVA filters in sunscreens for the higher melanoma risk found for sunscreen users.
Ultraviolet photons harm the DNA molecules of
living organisms in different ways. In one common damage
event, adjacent 
thymine bases bond with each other, nstead of
across the "ladder". This "
thymine dimer" makes a bulge,
and the distorted DNA molecule does not function properly.
UVB light can cause direct DNA damage. As noted above UVB radiation excites DNA molecules in skin cells, causing aberrant covalent bonds to form between adjacent cytosine bases, producing a dimer. When DNA polymerase comes along to replicate this strand of DNA, it reads the dimer as "AA" and not the original "CC". This causes the DNA replication mechanism to add a "TT" on the growing strand. This mutation can result in cancerous growths, and is known as a "classical C-T mutation". The mutations caused by the direct DNA damage carry a UV signature mutation that is commonly seen in skin cancers. The mutagenicity of UV radiation can be easily observed in bacterial cultures. This cancer connection is one reason for concern about ozone depletion and the ozone hole.