A touchscreen is an electronic visual display that can detect the presence and location of a touch within the display area. The term generally refers to touching the display of the device with a finger or hand.
Touchscreens are common in devices such as all-in-one computers, tablet computers, and smartphones, phones etc.. Now touch can also be seen on TVs, machines like washing machines and even watches.
The touchscreen has two main attributes. First, it enables one to interact directly with what is displayed, rather than indirectly with a cursor controlled by a mouse or touchpad. Secondly, it lets one do so without requiring any intermediate device that would need to be held in the hand. Such displays can be attached to computers, or to networks as terminals. They also play a prominent role in the design of digital appliances such as the personal digital assistant (PDA), satellite navigation devices, mobile phones, and video games.
There are two types of touch screen devices:
1) Resistive Touch:
In electrical engineering, resistive touchscreens are touch-sensitive computer displays composed of two flexible sheets coated with a resistive material and separated by an air gap or microdots. When contact is made to the surface of the touchscreen, the two sheets are pressed together. On these two sheets there are horizontal and vertical lines that when pushed together, register the precise location of the touch. Because the touchscreen senses input from contact with nearly any object (finger, stylus/pen, palm) resistive touchscreens are a type of "passive"
technology.
For example, during operation of a four-wire touchscreen, a uniform, unidirectional voltage gradient is applied to the first sheet. When the two sheets are pressed together, the second sheet measures the voltage as distance along the first sheet, providing the X coordinate. When this contact coordinate has been acquired, the uniform voltage gradient is applied to the second sheet to ascertain the Y coordinate. These operations occur within a few milliseconds, registering the exact touch location as contact is made.
Resistive touchscreens typically have high resolution (4096 x 4096 DPI or higher), providing accurate touch control. Because the touchscreen responds to pressure on its surface, contact can be made with a finger or any other pointing device.
2)Capacitive Touch/ Sensing:
In electrical engineering, capacitive sensing is a technology based on capacitive coupling that is used in many different types of sensors, including those to detect and measure: proximity, position or displacement, humidity, fluid level, and acceleration. Capacitive sensing as a human interface device (HID) technology, for example to replace the computer mouse, is growing increasingly popular. Capacitive touch sensors are used in many devices such as laptop trackpads, digital audio players, computer displays, mobile phones, mobile devices and others. More and more design engineers are selecting capacitive sensors for their versatility, reliability and robustness, unique human-device interface and cost reduction over mechanical switches.
Capacitive sensors detect anything which is conductive or having dielectric properties. While capacitive sensing applications can replace mechanical buttons with capacitive alternatives, other technologies such as multi-touch and gesture-based touchscreens are also premised on capacitive sensing.
Design:
Capacitive sensors can be constructed from many different media, such as copper, Indium tin oxide (ITO) and printed ink. Copper capacitive sensors can be implemented on standard FR4 PCBs as well as on flexible material. ITO allows the capacitive sensor to be up to 90% transparent (for one layer solutions). The size and spacing of the capacitive sensor are both very important to the sensor's performance.
In addition to the size of the sensor, and its spacing relative to the ground plane, the type of ground plane used is very important. Since the parasitic capacitance of the sensor is related to the electric field's (e-field) path to ground, it is important to choose a ground plane that limits the concentration of e-field lines with no conductive object present.
Designing a capacitance sensing system requires first picking the type of sensing material (FR4, Flex, ITO, etc.). One also needs to understand the environment the device will operate in, such as the full operating temperature range, what radio frequencies are present and how the user will interact with the interface.
There are two types of capacitive sensing system: mutual capacitance, where the object (finger, conductive stylus) alters the mutual coupling between row and column electrodes, which are scanned sequentially; and self- or absolute capacitance where the object (such as a finger) loads the sensor or increases the parasitic capacitance to ground. In both cases, the difference of a preceding absolute position from the present absolute position yields the relative motion of the object or finger during that time.
0 comments:
Post a Comment