Friday, February 18, 2011

How do our speakers work?

Moving coil microphone or dynamic microphone: 


The construction of a dynamic microphone resembles that of a loudspeaker, but in reverse. It is a moving coil type microphone which has a very small coil of thin wire suspended within the magnetic field of a permanent magnet. As the sound wave hits the flexible diaphragm, the diaphragm moves back and forth in response to the sound pressure acting upon it, and the attached coil of wire also moves within the magnetic field of the magnet. The resultant output voltage signal from the coil is proportional to the pressure of the sound wave acting upon the diaphragm so the louder or stronger the sound wave the larger the output signal will be, making this type of microphone design pressure sensitive.
As the coil of wire is usually very small the range of movement of the coil and attached diaphragm is also very small producing a very linear output signal which is 90o out of phase to the sound signal. Also, because the coil is a low impedance inductor, the output voltage signal is also very low so some form of "pre-amplification" of the signal is required.
As the construction of this type of microphone resembles that of a loudspeaker, it is also possible to use an actual loudspeaker as a microphone. Obviously, the average quality of a loudspeaker will not be as good as that for a studio type recording microphone but the frequency response of a reasonable speaker is actually better than that of a cheap "freebie" microphone. Also the coils impedance of a typical loudspeaker is different at between 8 to 16Ω. Common applications where speakers are generally used as microphones are in intercoms and walki-talkie's.

Moving coil loudspeaker or dynamic loudspeaker:
When an analogue signal passes through the voice coil of the speaker, an electro-magnetic field is produced and whose strength is determined by the current flowing through the "voice" coil, which inturn is determined by the volume control setting of the driving amplifier. The electro-magnetic force produced by this field opposes the main permanent magnetic field around it and tries to push the coil in one direction or the other depending upon the interaction between the north and south poles. As the voice coil is permanently attached to the cone/diaphragm this also moves in tandem and its movement causes a disturbance in the air around it thus producing a sound or note. If the input signal is a continuous sine wave then the cone will move in and out acting like a piston pushing and pulling the air as it moves and a continuous single tone will be heard representing the frequency of the signal. The strength and therefore its velocity, by which the cone moves and pushes the surrounding air produces the loudness of the sound.


0 comments:

Post a Comment