Monday, January 30, 2012

Electromagnetism

History of the Electromagnetic Theory:
Electricity and Magnetism which were once thought of two different types of interactions but was changed when scientists, especially Maxwell observed that there were a few things common between Electricity and Magnetism. These were:
James Clerk Maxwell
  1. Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: unlike charges attract, like ones repel.
  2. Magnetic poles (or states of polarization at individual points) attract or repel one another in a similar way and always come in pairs: every north pole is yoked to a south pole.
  3. An electric current in a wire creates a circular magnetic field around the wire, its direction (clockwise or counter-clockwise) depending on that of the current.
  4. A current is induced in a loop of wire when it is moved towards or away from a magnetic field, or a magnet is moved towards or away from it, the direction of current depending on that of the movement.
While preparing for an evening lecture on 21 April 1820, Hans Christian Ørsted made a surprising observation. As he was setting up his materials, he noticed a compass needle deflected from magnetic north when the electric current from the battery he was using was switched on and off. This deflection convinced him that magnetic fields radiate from all sides of a wire carrying an electric current, just as light and heat do, and that it confirmed a direct relationship between electricity and magnetism.

Hans Christian Ørsted
The Electromagnetic ForceThe electromagnetic force is one of the four known fundamental forces. The other fundamental forces are: the strong nuclear force, which binds quarks to form nucleons, and binds nucleons to form nuclei, the weak nuclear force, which causes certain forms of radioactive decay, and the gravitational force. All other forces are ultimately derived from these fundamental forces and momentum carried by the movement of particles.
The electromagnetic force is the one responsible for practically all the phenomena one encounters in daily life above the nuclear scale, with the exception of gravity. Roughly speaking, all the forces involved in interactions between atoms can be explained by the electromagnetic force acting on the electrically charged atomic nuclei and electrons inside and around the atoms, together with how these particles carry momentum by their movement. This includes the forces we experience in "pushing" or "pulling" ordinary material objects, which come from the intermolecular forces between the individual molecules in our bodies and those in the objects. It also includes all forms of chemical phenomena.
A necessary part of understanding the intra-atomic to intermolecular forces is the effective force generated by the momentum of the electrons' movement, and that electrons move between interacting atoms, carrying momentum with them. As a collection of electrons becomes more confined, their minimum momentum necessarily increases due to the Pauli exclusion principle. The behaviour of matter at the molecular scale including its density is determined by the balance between the electromagnetic force and the force generated by the exchange of momentum carried by the electrons themselves.
Uses Of Electromagnetism:
Fire Alarm
  1. To make temporary powerful Electromagnets
  2. used in electric bells
  3. used in fire alarms
  4. used in telephones
  5. used in motors
Electric Bell

0 comments:

Post a Comment